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Abstract. We obtain an exact solution of thed = 2 infinite (n × ∞) Ising strip with surface
fields of opposite signsh1 < 0, h2 ≡ +∞. Earlier predictions by Parryet al are confirmed of
the crucial importance of wetting for a system confined between two parallel walls that exert
competitive surface fields. The transition of the magnetization profilem(z) from the partial
wetting regime below the critical wetting temperature at a single wall(n = ∞) with a surface
field h1Tw(h1), to the soft-mode single phase in the temperature rangeTc,b > T > Tw(h1),
whereTc,b is the critical temperature of the bulk system, is described in detail. A scaling ansatz
is verified for the singular part of the surface excess free energy,σ sing and for the profile,
m(z, T , n, h1). The modification of the magnetization profile near one wall, due to wetting, is
studied. Near the(−) wall at T ≈ Tw(h1) the profile is found to be a linear function of the
scaled distance but its slope is different than for the case of perfect asymmetry systemh1 = −h2

hence these two cases belong to the different universality regime.

Recently, there has been an increasing interest in systems confined by walls. At the
same time there are only a few exactly solvable models available, which can verify
phenomenological or approximate theories of a rich variety of phenomena arising in these
systems. In this work we present exact calculations for an Ising magnet confined between
two parallel plates or walls which exert surface fieldsh1 andh2 on the respective surface
layers. Previous exact theoretical treatments [1] have focused on an Ising magnet and on
surface fields of the same sign,h1h2 > 0. Here we consider an Ising magnet confined by
walls which exert surface fields of the opposite sign,h1h2 < 0. The results and conclusions
will be applicable to simple fluids, with the usual caveats. For fields of opposite signs
h1h2 < 0 and h1 = −h2, a novel phase behaviour has been predicted by Parry and
Evans [2, 3] on the basis of the mean-field-type calculations. They have found that if one
wall favours liquid (spin up), while the other favours gas (spin down), phase equilibria of the
system are strongly influenced by wetting, in contrast to the case of similar walls(h1h2 > 0).
For a finite distance between the wallsn, the coexistence (or pseudo-coexistence ind = 2)
of two confined phases does occur forT < Tc,n where the temperatureTc,n is determined,
for large n, by the (critical) wetting properties of the confining walls rather than the bulk
critical properties.Tc,n is shiftedbelow the wetting temperatureTw(h1) of the semi-infinite
system with a surface field on the wallh1. The shift of theTc,n is determined by a length
scale pertinent to critical wetting:Tw(h1) − Tc,n ∼ n−1/βs, whereβs is the critical exponent
that describes the growth of the wetting film at a single wall. AboveTc,n the existence of a
single soft-mode phase has been predicted [2]. This phase is characterized, forh = 0 and
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largen, by the magnetization profile resembling that of the free up-spin–down-spin interface
located at the centre of the slit and the large transverse correlation lengthξ‖ ∼ n2/(3−d) for
d < 3. These predictions confirmed the previous suggestions by Brochard-Wyart and de
Gennes [4] and were confirmed in turn by Monte Carlo simulations [5, 6]. Although Parry
et al have specialized to perfect asymmetry(h2 = −h1), they have argued that their results
are not all restricted to this special case. For other work based on mean-field models, and
related work see [7–9].

In this paper we consider ad = 2 Ising magnet confined between parallel walls. The
system is infinite in thex-direction and has a finite widthn in the z-direction. We study
the case where the surface fields are of opposite signs but there isno perfect asymmetry
in a system. We choose here the surface fields so that wall (2) will be completely wet by
the (+) phase for allT > 0 (h2 = +∞) and wall (1) will be completely wet by the(−)

phase only above a certain (critical) wetting temperatureTw(h1). For such a system we
give an analytical transfer matrix (TM) solution taking the column–column transfer matrix
in a direction parallel to the walls. Owing to the exact diagonalization ofTM [10] we
calculate the surface excess free energy (per unit area) and the magnetization profiles of
that system in a wide range of temperature. We discuss the shape of the profiles below
Tw(h1) and for Tw(h1) > T > Tc,b and compare it to the case of perfect asymmetry of
surface fields. Our calculation of the magnetization profiles confirms the existence of the
single soft-mode phase. For large|h1|, Tw(h1) can lie arbitrarily far below theTc,b, so that
the soft-mode phase can extend over a wide temperature range. We have earlier studied
in detail the magnetization profiles and the Fisher–de Gennes scaling ofm(z, T , L) for
h2 = −h1 = +∞ for which Tw(h1) = Tw(h2) = 0 [11].

We also answer the following important questions: what happens to the system when
there is no asymmetry in the opposing fields; does the predicted [2, 4, 12] behaviour persist
beyond mean-field approximation, when strong capillary and critical fluctuations are present?
The case of two-dimensional systems is the ultimate test of the validity of the above
predictions, since we know that in this low dimension, fluctuations are particularly strong.

In order to study the role of wetting for the location of pseudo-critical temperatureTc,n,
we verify the proposed [2, 3] scaling ansatz in the vicinity ofTw(h1). It is different from
that in the standard finite-size scaling near the critical point. The argument leading to this
ansatz is based on the idea that the wetting film thicknessl is a dominant scale in the
system asT → Tc,n whereTc,n lies very close to the wetting temperatureTw(h1). Hence
the scaling nearTw(h1) is formulated in terms of the exponentβs that describes the growth
of the wetting film thicknessl. We verify the scaling form for the surface excess free energy
(per unit area)σ sing

σ sing = n−τ�(nt ′βs) h = 0 (1)

where t ′ = |(Tw(h1) − T )/Tw(h1)| and � is the scaling function. Exponentτ is equal to
(2 − αs)/βs but for d < dc (= 3), τ reduces to 2(d − 1)/(3 − d) when making use of
hyperscaling, 2− αs = (d − 1)ν‖ and of the capillary-wave relationship,ν⊥ = (3 − d)ν‖/2
together withβs = ν⊥. We follow the standard definitions of the exponents, e.g. such as
used in [3]. The index ‘s’ refers to the ‘surface’. Note that verifying (1) withτ = 2, we
are checking more than scaling ansatz alone; indirectly we confirm the relationships for the
critical exponents.

As can be seen from our results, the presence of the other wall severely modifies
the magnetization profiles near the(−) wall. At the critical wetting temperatureTw(h1)

fluctuations manifest themselves strongly causing the long-ranged surface perturbation [12].
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The surface layer magnetization should scale as

1m
sing
1 ≡ m1,n − m1,∞ ∼ n−τ+1/βs h = 0 T = Tw(h1) (2)

which was derived [12] as a direct consequence of (1). We check the above scaling law with
τ = 2 andβs = 1 in d = 2 to see that1m

sing
1 decays asn−1, which is slower than the known

decayn−2 in d = 2 at the bulk critical temperature. The fluctuations responsible for this
behaviour have no bulk counterpart;interfacial fluctuations lead to the effects found here.
The generalization of this result to distancesz near the walls predicts the linear behaviour
near the(−) wall at Tw(h1) [12]. This agrees with our result although the slope of our
profile is not a number calculated in [12] for the perfect asymmetry caseh1 = −h2.

Let us now specify the model and describe the solution. It is thed = 2 Ising model
in the geometry of infinitely long strip(M × N, N → ∞) with the fixed(+/−) boundary
conditions:σ(x, z = 0) = −1 andσ(x, z = M) = +1 for all x = 1, . . . , N (N → ∞) and
with a nearest-neighbour ferromagnetic interactionJ1 andJ2, parallel and perpendicular to
the x axis, respectively. We setJ1 = J2 = J and, in addition, one row of modified bonds,
J = a0J , 0 < a0 < 1 is introduced parallel to thex axis, betweenz = 0 andz = 1 rows,
so that the surface fieldh1 = −a0J acts on the rowz = 1 and the surface fieldh2 = J acts
on the rowz = M − 1 (equivalent toh2 = +∞ acting on the rowz = M). The transfer
matrix (TM) acts along thex axis, i.e. along the wall(s). We diagonalize the symmetrized
TM, V = V

1/2
1 V2V

1/2
1 , with

V1 = exp

[
−K∗

M−1∑
1

σ z
m

]
(3)

V2 = exp[(a0K)σx
0 σx

1 ] exp

[
K

M∑
2

σx
m−1σ

x
2m

]
(4)

where σ i(i = x, y, z) are the Pauli matrices,K = βJ where β = 1/kT and
tanhK∗ = exp(−2K) defines the dual couplingK∗. The advantage of our formulation
lies in the explicit appearance of the weakened couplinga0K in V2. The solution of
the eigenproblem with spinor analysis [13], similar to [14, 15], with the additional use of
projection operators [11], leads to the eigenvectors|L〉 = f

†
l1
, . . . , f

†
lj
|0〉 with anodd number

of different anticommuting Fermi operatorsf †
k , 0 < k 6 M acting on the ‘vacuum’|0〉

determined byfl|0〉 = 0 for all l. |L〉 has the eigenvalue

3 = 30 exp[−γ (ωl1) − · · · − γ (ωlj )] (5)

where30 = exp
(

1
2

∑M
i=0 γ (ωi)

)
andγ (ω) > 0 is the Onsager’s function [16],

coshγ (ω) = cosh 2K∗ cosh 2K − sinh 2K∗ sinh 2K cosω . (6)

In additionγ0 = 0. Each eigenvalue is still doubly degenerate. The condition forM allowed
wave numbersωj is obtained from the solution of the associated eigenvalue problem, details
of which will be reported elsewhere, which has the form

ei2(M−1)ω = αeiδ′(ω)eiφ(ω) α = ±1 (7)

where eiφ is defined by

eiφ(ω) ≡ −i
T + bqz

T qz − b
(8)
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with

T ≡ − sinh2 2a0K

(e−γ − cosh 2a0K)
+ e−γ cosh 2K∗ − cosh 2a0K (9)

qz = −i
eiω sinh 2K − e−γ sinh 2K∗

e−γ cos 2K∗ − cosh 2K
(10)

andb = e−γ sinh 2K∗. Hereδ′(ω) is a parameter of Onsager’s hyperbolic triangle [14, 16]
and has the following factor form:

eiδ′(ω) = (AB)−1/2

[
(z2 − A)(z2 − B)

(z2 − A−1)(z2 − B−1)

]1/2

(11)

with z2 = eiω. Here A−1 = tanhK tanhK∗, B = tanhK/ tanhK∗ and the branch of
square root is taken such that exp iδ′(0) = −1. Let us denoteTw(h1), the critical wetting
temperature, obtained exactly by Abraham [17] for ad = 2 semi-infinite square Ising model
with a surface fieldh1 = −a0J . It satisfies the condition

W ≡ (cosh 2K∗ + 1)(cosh 2K − cosh 2a0K) = 1 . (12)

As follows from the behaviour of the functionδ′(ω) andφ(ω), there exists a temperature
Tw,M(h1) which lies slightly belowTw(h1) (for large M, Tw,M ∼ Tw − constant/M); for
T > Tw,M(h1) all solutions of (7) or (11) are real but below there exist onlyM − 1 real
solutions between 0 andπ which give non-trivial eigenvectors. All real solutions could be
found graphically or numerically from equation (7) rewritten in the form

tan((M − 1)ω) = tan(δ′(ω)/2 + φ(ω)/2) . (13)

For T < Tw,M(h1) the (one) ‘missing’ root corresponds tok = 1, and is found by allowing
ω1 to be imaginaryω1 = iv, v > 0, α = 1. For large but finiteM, v lies exponentially
close tov′, where e−v′ ≡ W−1,

v − v′ ∼ e−2Mv′
e−2δ′(iv′)2W−1 sinhv′ . (14)

Having foundv we find γ1 from

coshγ1 = coshv0 + 1 − coshv . (15)

Here v0 = 2(K − K∗) and is the familiar interfacial free energy per unit area divided by
kT . For Tw,M < T < Tc,b all M solutions forω are real and are found from (13). The
correspondingM values ofγ (ω) are given by (6) and are all greater thanv0. ForT < Tw,M

againγ (ω) corresponding toω real lie abovev0 but γ1 which comes fromω imaginary is
less thanv0. The full discussion of the behaviour of these roots, depending on all parameters
of the strip, will be presented elsewhere. In practical computations equation (13) as well as
equation (7) forω1 = iv have been solved numerically to machine accuracy.

For the average magnetization〈σm〉 in the limit of an infinitely long(N → ∞) strip
we obtain using diagonalization ofV the following formula:

lim
N→∞

〈σm〉 = −(i)m〈0|f10001 · · ·02mf
†
1 |0〉 . (16)

This formal expression for〈σm〉 has been transformed into a form suitable for practical
computations using the Wick theorem and simplifying the Pfaffian to a determinant of a
certain matrixB (in a way similar to that described in [11]).

〈σm〉 = − det(B) . (17)

This new explicit expression can be calculated and computed.
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Figure 1. A selection of computed
magnetization profilesm(z) for fixed
M = 260, fixeda0 = 0.8 at thez = 0
wall and various temperatures in units of
Tc: (a) T/Tc = 0.4; (b) T/Tc = 0.6201;
(c) T/Tc = 0.6212; (d) T/Tc = 0.623;
(e) T/Tc = 0.7. Fora0 = 0.8 the wetting
temperatureTw/Tc ≈ 0.6212. The lines
are drawn through all 260 points. The
inset shows the blown-up portion ofm(z)

near the(−) wall.

We usedM ∈ [20, 400]. Figure 1 shows typical plots of the magnetization profile for
fixed width of the stripn ≡ M − 1, fixed value of parametera0 = 0.8 and at different
temperatures. Well belowTw(h1), 〈σm〉 is nearly constant equal to+m∗(T ), for almost all
m except few lattice spaces near the(−) wall,

+m∗(T ) ≡ +[1 − (sinh 2K)−4]1/8 (18)

being the spontaneous magnetization of the(+) phase in the bulk system, shown as curves
(a) and (b) of figure 1. Rapid but continuous change of the magnetization profile takes
place in the narrow interval aboutTw(h1). Very close to the(−) wall the profile becomes
linear; for T ' Tw(h1) this linear behaviour extends quite far from the wall and the slope
read off the figure is equal to∼3.6 ± 0.45 (curve (c)). The value of this slope is known at
present only to accuracy±0.45 since it is estimated from the plot. Slightly aboveTw(h1) the
derivative∂m1/∂z decreases to 0 and then it changes sign. At the same time there appears
an inflexion point and a plateau of the(−) phase near the(−) wall. With the further
increase inT the inflexion point gradually moves away from the wall, the film of the(−)

phase grows and eventually we get an asymmetric profile (curve (e)) with the interface in
the middle of a strip. Also the derivative∂m1/∂z becomes positive (not shown in figure 1).
This behaviour may also be obtained by varying the magnitude ofa0 at fixed temperature.
For our choice of surface fields, belowTw(h1) for n → ∞ the wall (+) is completely wet
and the wall(−) is partially wet. Because|h2| > |h1|, for finite n below Tw(h1) almost
the whole system is filled with the(+) phase, the wall(−) being partially wet with the
(−) phase. AboveTw(h1) we observe the interface-like profile which, according to the
interpretation given by Parryet al [2, 3], is characteristic for thesingle soft-mode phasethat
arises above the pseudo-critical point,Tc,n < Tw(h1), for a system with opposite surface
fields [2].

To check the scaling ansatz for the surface excess free energy (per unit area)σ sing given
by (1), we have calculatedσ(n) from

βσ(n) = − lim
N→∞

(1/N) log(Z+−/Z++) (19)

whereZ+− andZ++ are partition functions for our system with opposite(+/−) and fixed
(+/+) boundary conditions, respectively. In theN → ∞ limit σ(n) is equal toγ1 given
by (15) if T < Tw,M or given by (6) ifTw,M < T < Tc,b. Then we have plotted−n2βσ sing,
whereβσ sing ≡ βσ − v0, as a function ofy ≡ nt ′, wheret ′ = |(Tw(h1) − T )/Tw(h1)|, for
fixed a0 and different values ofn (figure 2). As can be seen from figure 2, the scaling is
very good starting fromy ∼ −20.
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Figure 2. Scaling for the surface excess free
energy (per unit area),σ sing, given by (1).
n2βσ sing is plotted as function ofy = nt ′
for fixed a0 and differentn: (a) circles for
n+1 = 100, (b) diamonds forn+1 = 180, (c)
squares forn + 1 = 260.

Figure 3. Scaling for the surface perturbation
given by (2). n(〈σ1〉+/− − 〈σ1〉+/+) was
calculated for fixeda0 and different n: (a)
circles for n + 1 = 100, (b) diamonds for
n + 1 = 180, (c) squares forn + 1 = 260,
and plotted againsty = nt ′.

Also, the prediction for perturbation of the surface layer magnetization1m
sing
1 ≡

m1,n − m1,∞, (equation (2)) is confirmed for this model as follows from figure 3 where we
have plottedn(〈σ1〉+/− − 〈σ1〉+/+) calculated for fixeda0 and differentn, againsty = nt ′.
(〈σ1〉+/− and〈σ1〉+/+) are surface magnetizations for(+/−) and(+/+) boundary condition,
respectively.

The scaling relations for the magnetization profile in a parallel plate geometry with
opposing surface fields at the fluctuation-dominated critical wetting transition were proposed
by Parry [18]. He made an ansatz

m(z, T , M)/m∗ = M(zt ′βs; nt ′βs) h = 0, T 6 Tw(h1) (20)

valid asymptotically fort ′ → 0 andn → ∞.
To check (20), we plot(m(z)−m∗)/m∗, calculated for differentn, as a function ofz/n

for fixed y = nt ′ (βs = 1 for a d = 2 Ising model) and fixeda0. Scaling is excellent for
a wide range of variabley from y = −10 up toy = +10 thus not only forT 6 Tw(h1)

as predicted. Figure 4 shows two scaling functions: (a) for y ∼ 0, i.e. for T ∼ Tw(h1);
(b) for y = +10 where the profile is typical for the single soft-mode phase. Fory ∼ 0 the
profile is linear near the(−) wall.

We can compare our results for the scaled magnetization profiles with the availabled = 2
results from theRSOSand capillary-wave (CW) Hamiltonian [18] model for strip geometry.
For T = Tw(h1)(y = 0) the capillary-wave Hamiltonian for the perfect asymmetry case
gives the linear profile across the whole strip. For the case of no perfect asymmetry
|h1| 6= |h2| the profile is linear only near wall (1) and does not depend on the surface fields
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Figure 4. Scaling of the magnetization
profiles. (m(z, T , M) − m∗(T ))/m∗(T ) was
calculated for differentn and fixed a0 and
plotted againstz/n for the following values
of the second variabley = nt ′: (a) y ∼ 0; (b)
y = +10. (a) Shows linear behaviour near
0; (b) shows typical single soft-mode profile.
All points collapse onto one curve.

h1, h2 [18]:

m(z)/m∗ = −1 + 2z/n + (2/π) sin(πz/n) T = Tw(h1) . (21)

For T > Tw(h1) in both cases: (i) perfect asymmetryh1 = −h2 and (ii) no perfect
asymmetry|h1| 6= |h2| RSOSandCW Hamiltonian models give the profile which is a function
of only one scaled variablez/n and does not depend on a particular choice ofh1 andh2

m(z) = −m∗[1 − 2z/n + π−1 sin(2πz/n)] . (22)

Our profiles change their shape with the temperature but sufficiently far fromTc,b they
perfectly agree with (22). The accuracy of (22) as well as the other properties of the profile
in the soft-mode phase were studied earlier [11]. See also [20].

Another scaled profile forn → ∞ was calculated earlier by Abraham [17] aboveTw(h1).
That profile describes a single drop on the wall of a semi-infinite system. This implies the
limit M → ∞ first. The amplitude of the capillary-wave fluctuations is not limited and the
scaling variable isz/

√
s wheres is the area covered by drop. In our caseN → ∞ first

for finite M and the amplitude of capillary waves is cut by the finite width of the stripn.
For T � Tc,b but aboveTw(h1) we find expression for the profile like (22) with the scaling
variablez/n and not the erf function.

Another predicted [12] consequence of the strong capillary-wave-like fluctuation at
the wetting temperature and in the soft-mode phase is the algebraic decay law for the
magnetization profiles near one wall. AtT = Tw(h1) the linear behaviour of the profile
m(z) near wall (1) was derived [12] from the generalization of the predictions for the surface
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layer perturbation1m
sing
1 to distancesz near the walls:

1m(z)/m∗ ∼ c3(z/n) T = Tw(h1) h = 0 (23)

for z/n → 0, z much greater than the bulk correlation length. The same generalization for
the temperatures aboveTw(h1) gives [12]

1m(z)/m∗ ∼ c2(z/n)3 Tc,b > T > Tw(h1) h = 0 (24)

again forz/n → 0, z much greater than the bulk correlation length. The amplitude ratios
c3 andc2 have been predicted to be universal numbers which should not change [18] if the
spin–spin interactions are modified to model dispersion forces. This followed from analysing
the universal scaling functionsm(z)/m∗ nearTw(h1) and above, taking into account non-
universal metric factors (see [18]). Hencec2 and c3 should be universal for weak- and
strong-fluctuation-regime wetting transitions, respectively. Fluids exhibiting van der Waals
(dispersion) forces belong to these regimes ind = 2.

From theRSOSmodel with full asymmetry(h1 = −h2), |c3| was found [12] to be equal
to 2. For |h1| 6= |h2|, h1h2 < 0 the prediction [20] is|c3| = 4 and our slope of 3.6 ± 0.45
agrees with this result reasonably well. One must expect the profiles forh1h2 < 0 and
h1 = −h2 to be in a different universality class from profiles for|h1| 6= |h2| [19].

The shape of a profile for a single inhomogeneous phase above wetting temperature
obtained from our calculations agrees perfectly with the profile obtained fromRSOSmodel
in both cases (i) perfect asymmetry (h1 = −h2) and (ii) no perfect asymmetry|h1| 6= |h2|,
thusc2 appears to be universal and in this temperature region both cases belong to the same
universality class.

In conclusion, from our exact calculations for an Ising strip with fields of opposite sign
it follows that although true criticality does not exist in thisd = 2 system, the effects of
wetting manifest themselves in a manner analogous to that found in higher dimensions.
The phase behaviour predicted on the basis of the mean field type calculation supplemented
with general considerations [2, 3, 10] survives strong capillary and critical fluctuations. Our
choice of surface fields shifts the system away from the coexistence line and allows us to
study the behaviour of the single-phase profile, as the wetting temperature is approached.
At T ≈ Tw(h1) we have obtained the linear behaviour of the magnetization profile near one
wall. This is consistent with the result fromRSOS model with (h1 6= −h2) but slopes of
both lines are different in the two cases(h1 = −h2 and |h1| 6= |h2|).

The shape of a profile for a single inhomogeneous phase above wetting temperature
obtained from our calculations agrees perfectly with the profile obtained from theRSOS

model for both the perfect asymmetry and no perfect asymmetry cases. From that we can
conclude that predicted [12] behaviour of the profile near walls is given by (24) with the
same universal constantc2 for both cases.
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